Abstract

Pathogenic bacteria are widely distributed in diverse environments and significantly threaten human health. Point-of-care testing (POCT) is a valuable way for early warnings of bacteria threat. Herein, a chemiluminescence (CL)-based ratiometric sensing platform was constructed for sensitive POCT of bacteria according to a newly designed aggregation-induced emission (AIE) molecule. The new AIE molecule presents oxidase-like properties (named as AIEzyme) and can trigger long persistent CL of luminol (LUM) with strong intensity in the absence of H2O2. The CL emission can be monitored with the naked eye for over 2 h. The emission mechanism is explored and may be attributed to the persistent reactive oxygen species generation of the AIEzyme according to the cyclic energy transfer between the AIEzyme and luminol, which catalyzes CL of luminol. Based on the CL resonance energy transfer mechanism, an afterglow luminescence system is further developed, which is used to construct a ratiometric biosensor for detection of pathogenic bacteria. With a homemade holder as a detection room and a smartphone as an analyzer, the portable biosensing platform is used for quantitative POCT of bacteria in real samples with good recovery. The detection is free of H2O2 and an external excitation source, which not only simplifies the operation but reduces interference. Specifically, the long persistent luminescence and the ratiometric strategy can significantly improve accuracy, providing an instructive way for point-of-need analysis, for example, SARS-CoV-2 detection and bioimaging analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call