Abstract

Somatic hypermutation (SHM) of immunoglobulin (Ig) genes appears to involve the generation of double-strand DNA breaks (DSBs) and their error-prone repair. Here we show that DSBs occur at a high frequency in unrearranged (germline) Ig variable (V) genes, BCL6 and c-MYC. These DSBs are blunt, target the mutational RGYW/RGY hotspot, and would be resolved through nonhomologous end-joining, as indicated by the presence of Ku70/Ku86 on these DNA ends. Upon CD40-induced expression of activation-induced cytidine deaminase (AID), DSBs increase in frequency and are resected to yield 5′- and 3′-protruding ends in hypermutating rearranged V genes, BCL6 and translocated c-MYC. 3′-protruding ends would direct DSB repair through homologous recombination, as indicated by their exclusive presence in S/G2 and recruitment of Rad52/Rad51, leading to SHM, upon mispair by error-prone DNA polymerases modulated by crosslinking of the B cell receptor for antigen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.