Abstract
ABSTRACTThe neurological manifestations of Lesch-Nyhan disease (LND) have been attributed to the effect of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency on nervous system development. An increase has been reported in the levels of 5-aminoimidazole-4-carboxamide-1-β-D-ribotide (AICAR) and its triphosphate form ZTP in the red blood cells of patients with LND. AICAR accumulation in the brain has been hypothesized as the cause of some of the neurological symptoms of patients with LND. In this study, we examined the effect of AICAR on the differentiation of neurons in the well-established human NTERA-2 cl.D1 (NT2/D1) embryonic carcinoma neurogenesis model. NT2/D1 cells were differentiated along neuroectodermal lineages after exposure to 10-µM retinoic acid (RA), with or without the addition of 25-µM AICAR to the culture medium. The effect of AICAR on RA differentiation were examined through changes in the expression of genes essential to neuronal differentiation, as well as genes from the Wnt/β-catenin, transforming growth factor beta (TGFβ) and sonic hedgehog (SHH) pathways.Results: RA-induced differentiation in the NT2/D1 cells significantly increased the expression of MAP2, NRG1, NRP1, NRP2, NEUROG1 and EN1 genes (genes linked to neural differentiation) compared with undifferentiated NT2/D1 cells. We found that AICAR increased the expression of the SHH gene and the WNT2 and WNT7B genes but did not influence the expression of genes whose overexpression characterize early neurodevelopmental processes.Conclusion: The relevance of the AICAR related changes in the SHH and Wnt/β-catenin pathway genes expression in the physiopathology of LND warrants further exploration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have