Abstract
Purpose: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Accurate survival prediction is crucial for advanced-stage patients to optimize treatment strategies and improve clinical outcomes. This study aimed to develop an artificial intelligence-assisted clinical decision support system (CDSS) for survival prediction in CRC patients using clinical and genomic data from the Cancer Genome Atlas Colon Adenocarcinoma Collection (TCGA-COAD) dataset. Methods: Machine learning algorithms, including C4.5 Decision Tree, Support Vector Machines (SVM), Random Forest, and Naive Bayes, were employed to create survival prediction models. Clinical parameters and genomic data from key pathways, such as glycolysis/gluconeogenesis and mTORC1, were integrated into the models. The models were evaluated based on accuracy and performance. Results: The Random Forest algorithm achieved the highest accuracy (82.3%) when only clinical parameters were used. When clinical data were combined with gene expression data, the model’s accuracy increased further. The resulting models were incorporated into a user-friendly web interface, SurvCOCA, for clinical use. Conclusions: This study demonstrates the potential of AI-based tools to improve prognosis predictions in CRC patients. Further research is needed, with larger datasets and additional machine learning algorithms, to enhance clinical decision-making and optimize treatment strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.