Abstract

AI-driven journalism refers to various methods and tools for gathering, verifying, producing, and distributing news information. Their potential is to extend human capabilities and create new forms of augmented journalism. Although scholars agreed on the necessity to embed journalistic values in these systems to make AI-driven systems accountable, less attention is paid to data quality, while the results' accuracy and efficiency depend on high-quality data. However, data quality remains complex to define insofar as it is a multidimensional, highly domain-dependent concept. Assessing data quality in the context of AI-driven journalism requires a broader and interdisciplinary approach, relying on the challenges of data quality in machine learning and the ethical challenges of using machine learning in journalism. These considerations ground a conceptual data quality assessment framework that aims to support the collection and pre-processing stages in machine learning. It aims to contribute to strengthening data literacy in journalism and to make a bridge between scientific disciplines that should be viewed through the lenses of their complementarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.