Abstract

In today’s manufacturing industry, enterprise-resource-planning (ERP) systems reach their limit when planning and scheduling production subject to multiple objectives and constraints. Advanced planning and scheduling (APS) systems provide these capabilities and are an extension for ERP systems. However, when integrating an APS and ERP system, the ERP data frequently lacks quality, hindering the APS system from working as required. This paper introduces a data quality (DQ) assessment framework that employs a Bayesian Network (BN) to perform quick DQ assessments based on expert interviews and DQ measurements with actual ERP data. We explain the BN’s functionality, design, and validation and show how using the perceived DQ of experts and a semi-supervised learning algorithm improves the BN’s predictions over time. We discuss applying our framework in an APS system implementation project involving an APS system provider and a medium-sized manufacturer of hydraulic cylinders. Despite considering the DQ assessment framework in such a specific context, it is not restricted to a particular domain. We close by discussing the framework’s limits, particularly the BN as a DQ assessment methodology and future works to improve its performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.