Abstract

Single image rain removal plays an important role in numerous multimedia applications. Existing algorithms usually tackle the deraining problem by the way of signal removal, which lead to over-smoothness and generate unexpected artifacts in de-rained images. This paper addresses the deraining problem from a completely different perspective of feature-wise disentanglement, and introduces the interactions and constraints between two disentangled latent spaces. Specifically, we propose an Asynchronous Interactive Generative Adversarial Network (AI-GAN) to progressively disentangle the rainy image into background and rain spaces in feature level through a two-branch structure. Each branch employs a two-stage synthesis strategy and interacts asynchronously by exchanging feed-forward information and sharing feedback gradients, achieving complementary adversarial optimization. This ‘adversarial’ is not only the ‘adversarial’ between the generator and the discriminator, but also means that the two generators are entangled, and interact with each other in the optimization process. Extensive experimental results demonstrate that AI-GAN outperforms state-of-the-art deraining methods and benefits various typical multimedia applications such as Image/Video Coding, Action Recognition, and Person Re-identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call