Abstract
Vitiligo is a skin disorder that is associated with a decreased risk of skin cancer, but it can lead to increased susceptibility to sunburn, psychological distress, and disruptions in daily life, consists of two primary subtypes: segmental and nonsegmental vitiligo, each with distinct underlying mechanisms. However, the reliable identification of diagnostic markers and the ability to differentiate between these subtypes have remained elusive challenges. This study aims to pioneer predictive algorithms for vitiligo diagnosis, harnessing the capabilities of AI (Artificial Intelligence) to amalgamate multisource data and uncover essential features for distinguishing vitiligo subtypes.An ensemble algorithm was thoughtfully developed for vitiligo diagnosis, utilizing a spectrum of machine learning techniques to evaluate the likelihood of vitiligo, whether segmental or nonsegmental. Diverse machine learning methodologies were applied to distinguish between healthy individuals and vitiligo patients, as well as to differentiate segmental from nonsegmental vitiligo. The ensemble algorithm achieved a remarkable AUC (Area Under the Curve) of 0.99 and an accuracy of 0.98 for diagnosing vitiligo. Furthermore, in predicting the development of segmental or nonsegmental vitiligo, the model exhibited an AUC of 0.79 and an accuracy of 0.73. Key parameters for vitiligo identification encompassed factors such as age, FBC (full blood count)-neutrophils, FBC-lymphocytes, LKF(liver and kidney function)-direct bilirubin, LKF-total bilirubin, and LKF-total protein levels. In contrast, vital indicators for monitoring the progression of segmental and nonsegmental vitiligo included FBC-B lymphocyte count, FBC-NK (Natural Killer) cell count, and LKF-alkaline phosphatase levels. This retrospective study underscores the potential of AI-driven analysis in identifying significant risk factors for vitiligo and predicting its subtypes at an early stage. These findings offer great promise for the development of effective diagnostic tools and the implementation of personalized treatment approaches in managing this challenging skin disorder.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have