Abstract

While machining processes are typically leveraged to establish geometric features, many functional characteristics of advanced materials are directly determined by their machining-induced quality, i.e. surface integrity. Current modeling approaches struggle to predict surface integrity, and typically neglect the effects of progressive tool-wear, resulting in inefficient ‘static’ process parameters. We present a novel integrated approach based on model-informed artificial intelligence (AI), which quickly and efficiently optimizes ‘dynamic’ process parameters. By maximizing the useful life of a cutting tool over which required quality parameters can be maintained, our paradigm will enable significantly more efficient processing of next-generation materials and components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call