7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.55041/ijsrem32324
Copy DOIPublication Date: Apr 28, 2024 | |
License type: mit |
In today's fast-paced business landscape, effective communication is a key for success. With the increasing volume of phone calls in various industries, there is a growing need for efficient call management and analysis tools. The AI Call Assistant project aims to address this need by leveraging artificial intelligence (AI) technology to summarize call recordings, enhancing productivity and decision-making processes. The core functionality of this project revolves around its ability to process audio data from call recordings and extract key insights and information. Using advanced natural language processing (NLP) techniques, the system identifies important topics, sentiments, and actions discussed during the call. The call transcripts attained from call recording pose unique challenges that are not adequately addressed by most open-source automatic text summarizers. This project aims to contribute to the field of artificial intelligence by providing efficient and effective methods to recognize call recording and summarize, offering a valuable tool for extracting insights from spoken audio efficiently.Top of Form This research aligns with the broader fields of natural language processing (NLP), machine learning, and artificial intelligence (AI), particularly in the domain of speech recognition and understanding. It also intersects with communication technology and data analytics, focusing on optimizing call management processes and extracting actionable insights from conversational data. Moreover, it aligns with the goal of improving efficiency and decision-making in various industries through the application of AI-driven solutions. Overall, this project offers a novel approach to improving call management processes through AI-driven extractive summarization, contributing to advancements in natural language processing and communication technologies. Key Words: Artificial Intelligence, BERT, Textual Summarization, Transformers, Natural Language Processing, Speech Recognition, Speech-To-Text.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.