Abstract

PurposeWe developed and tested a neural network for automated detection and stability analysis of vertebral body fractures on computed tomography (CT). Materials and Methods257 patients who underwent CT were included in this Institutional Review Board (IRB) approved study. 463 fractured and 1883 non-fractured vertebral bodies were included, with 190 fractures unstable. Two readers identified vertebral body fractures and assessed their stability. A combination of a Hierarchical Convolutional Neural Network (hNet) and a fracture Classification Network (fNet) was used to build a neural network for the automated detection and stability analysis of vertebral body fractures on CT. Two final test settings were chosen: one with vertebral body levels C1/2 included and one where they were excluded. ResultsThe mean age of the patients was 68 ± 14 years. 140 patients were female. The network showed a slightly higher diagnostic performance when excluding C1/2. Accordingly, the network was able to distinguish fractured and non-fractured vertebral bodies with a sensitivity of 75.8 % and a specificity of 80.3 %. Additionally, the network determined the stability of the vertebral bodies with a sensitivity of 88.4 % and a specificity of 80.3 %. The AUC was 87 % and 91 % for fracture detection and stability analysis, respectively. The sensitivity of our network in indicating the presence of at least one fracture / one unstable fracture within the whole spine achieved values of 78.7 % and 97.2 %, respectively, when excluding C1/2. ConclusionThe developed neural network can automatically detect vertebral body fractures and evaluate their stability concurrently with a high diagnostic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call