Abstract
Proteomics, the study of proteins within biological systems, has seen remarkable advancements in recent years, with protein isoform detection emerging as one of the next major frontiers. One of the primary challenges is achieving the necessary peptide and protein coverage to confidently differentiate isoforms as a result of the protein inference problem and protein false discovery rate estimation challenge in large data. In this chapter, we describe the application of artificial intelligence-assisted peptide property prediction for database search engine rescoring by Oktoberfest, an approach that has proven effective, particularly for complex samples and extensive search spaces, which can greatly increase peptide coverage. Further, it illustrates a method for increasing isoform coverage by the PickedGroupFDR approach that is designed to excel when applied on large data. Real-world examples are provided to illustrate the utility of the tools in the context of rescoring, protein grouping, and false discovery rate estimation. By implementing these cutting-edge techniques, researchers can achieve a substantial increase in both peptide and isoform coverage, thus unlocking the potential of protein isoform detection in their studies and shedding light on their roles and functions in biological processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.