Abstract
In shotgun proteomics, false discovery rate (FDR) estimation is a necessary step to ensure the quality of accepted peptide-spectrum matches (PSMs) from a database search. Popular statistical validation tools for FDR control tend to rely on target-decoy searching to build empirical, dataset-specific models, which often leads to inaccurate FDR estimates. In this paper, we propose a new approach named common decoy distribution (CDD) to FDR estimation using the idea of a fixed empirical null score distribution derived from millions of peptide tandem mass spectra. To demonstrate the viability of CDD, its stability with respect to noise and the presence of unexpected peptide modifications was evaluated. PeptideProphet-based implementation of CDD was benchmarked against decoy-based PeptideProphet, and both methods exhibited similar accuracy of FDR estimates and retrieval of correct PSMs. The finding of this study calls for a re-evaluation of the necessity of dataset-specific target-decoy searches and illustrates the potential of Big Data approaches for statistical analysis in proteomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.