Abstract
Human triple-negative breast cancer (TNBC) being an aggressive cancer type accounts for about 15–20% of global breast cancer cases. In the present study, the cytotoxicity of pure silver (AgVI) and silver/zinc oxide (Ag/ZnOVI) nanostructures was evaluated against the TNBC cells. The nanostructures synthesized from a green route using Vateria indica (L.) fruit extract were characterized to scrutinize their formation, crystal phase, size, shape, and surface properties via FTIR, PXRD, FE-SEM coupled with EDS spectroscopy, and BET analysis. The results of the studies have unveiled the formation of 26.43 nm and 20.97 nm sized AgVI and Ag/ZnOVI nanostructures in their purest form. The in-vitro anticancer study performed on human TNBC cells [MDA-MB468] revealed the enhancement in the antiproliferative potentiality of bimetallic Ag/ZnOVI nanostructures from 66.99 ± 0.13 to 79.73 ± 0.23 in comparison to pure AgVI nanostructures. In addition to this, the greenish yellow-fluorescence observed in the TNBC nuclei during the AO-EB staining study manifested the early apoptosis. Furthermore, the anti-inflammatory and cytotoxicity study performed on the human RBC and normal NIH3T3 murine fibroblasts cells proved the biocompatibility and non-toxic nature of the synthesized nanostructures with membrane stabilization percentage up to 94.5 ± 0.001. Additionally, the antioxidant and antidiabetic studies carried out have corroborated the radical scavenging and α-amylase inhibition capability up to 85.87 ± 0.001 and 89.60 ± 0.002 % respectively. Thus the overall results of the study substantiate the superlative antioxidant, antidiabetic, and antiproliferative property of green synthesized AgVI and Ag/ZnOVI nanostructures with excellent biocompatibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.