Abstract

Plasmonic Ag nanoparticles were photodeposited on the surface of Sr2TiO4 and Bi5O7I to fabricate a photoelectrode for photoelectrochemical measurements. The Ag@Sr2TiO4/Bi5O7I heterostructured composite exhibited extended visible-light absorption, surface plasmonic resonance, improved photocurrent response, decreased film resistance, and increased donor density. The semiconducting properties of these samples, including the conduction and valence band levels, flatband potential, and donor density, were obtained from AC impedance spectra, a Mott–Schottky analysis, and a linear current–potential scan under the illumination of a xenon lamp with an AM1.5 filter to simulate AM 1.5-type solar irradiation. The Mott–Schottky analysis clearly displayed the formation of a p–n junction at the interface of the Ag@Sr2TiO4/Bi5O7I composite, which is advantageous to the electron transfer. Thanks to its interfacial p–n junction and the surface plasmonic resonance effect of Ag on the Ag@Sr2TiO4/Bi5O7I composite, this photoelectrode can serve as a potential candidate for solar-driven photoelectrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.