Abstract

Crevice corrosion in modular taper junctions of hip or knee replacements using cobalt-chrome-molybdenum (CoCrMo) alloys remains a clinical concern. Non-mechanically-driven corrosion has been less explored compared to mechanically assisted crevice corrosion. This study hypothesized that solution chemistry within crevices, inflammation, and cathodic electrode potential shifts during fretting result in low pH and generate reactive oxygen species (ROS), affecting oxide film behavior. This study investigated how resistance and capacitance of the CoCrMo oxide film (i.e., corrosion resistance) are modified in simulated in vivo crevice environments of modular taper junctions. Six solutions were evaluated (two pH levels: 1 and 7.4 and four hydrogen peroxide (H2O2) concentrations: 0, 0.001, 0.01 and 0.1 M). Rp versus voltage and Mott–Schottky plots were created from symmetry-based electrochemical impedance spectroscopy (sbEIS). At pH 1, the semiconductor transition to p-type occurs at more anodic potentials and higher flat band potentials were found. H2O2 decreased the flat band potential and slope in the Mott–Schottky plot. Higher H2O2 in pH 7.4 solution significantly modified the oxide film, leading to increased donor density (p = 0.0004) and a 150-fold reduction in Rp in the cathodic potential range at -1 V (p = 0.0005). The most unfavorable condition (0.1 M H2O2 pH 1) resulted in a 250-fold lower resistance compared to phosphate buffered saline (PBS) pH 7.4 at -1 V (p = 0.0013). This study highlights the corrosion susceptibility of CoCrMo under adverse chemical and potential conditions, identifying increased defects in the oxide film due to ROS, hydrogen ions and electrode potential. Statement of significanceCorrosion of cobalt chrome molybdenum alloy caused by direct chemical attack in the crevice region of hip replacements, such as modular taper junctions, remains a clinical concern. The junction environment contains adverse chemical compositions, including high acidity and reactive oxygen species (ROS) due to inflammatory responses against the corrosion products. We simulate inflammatory environments with different pH levels and hydrogen peroxide, representative of ROS. We employ electrochemical impedance spectroscopy and apply stepwise voltage over the range induced by tribocorrosion processes. We relate the effect of adverse chemical components on corrosion and semiconducting behavior of the oxide film using Mott–Schottky analysis. This study shows how pH and ROS concentration compromises the oxide film potentially leading to non-mechanically induced corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.