Abstract

Zinc (Zn) is increasingly recognized as an essential trace element in the human diet that mediates a plethora of health conditions, including immune responses to infectious diseases. Interestingly, the geographical distribution of human dietary Zn deficiency overlaps with soil Zn deficiency. In South Asia, Zn malnutrition is high due to excessive consumption of rice with low Zn content. Interventions such as dietary diversification, food fortification, supplementation, and biofortification are followed to address Zn malnutrition. Among these, Zn biofortification of rice is the most encouraging, cost-effective, and sustainable for South Asia. Biofortification through conventional breeding and transgenic approaches has been achieved in cereals; however, if the soil is deficient in Zn, then these approaches are not advantageous. Therefore, in this article, we review strategies for enhancing the Zn concentration of rice through agronomic biofortification such as timing, dose, and method of Zn fertilizer application, and how nitrogen and phosphorus application as well as crop establishment methods influence Zn concentration in rice. We also propose data-driven Zn recommendations to anticipate crop responses to Zn fertilization and targeted policies that support agronomic biofortification in regions where crop responses to Zn fertilizer are high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call