Abstract

ABSTRACTConcern over the food chain transfer of zinc (Zn) is increasing because of its importance in human health. A field experiment was conducted on a low Zn soil to determine the effect of different Zn fertilization strategies on grain Zn concentration and Zn allocation in different plant tissues of rice. Six treatments were used: (1) no Zn fertilization; (2) soil fertilization at transplanting; (3) Zn soil fertilization at transplanting and flowering; (4) foliar application during grain filling; (5) foliar applications during tillering, flowering, and grain filling; and (6) combination of treatments 3 and 5. Zn fertilization significantly increased Zn concentration in brown rice. The largest effect on grain Zn was observed by combination of soil and foliar applications. The increase in brown rice was much smaller (20%) than the increase in the vegetative parts (100%), indicating that grain Zn concentration of rice is not strongly increased by Zn fertilization. More increased Zn by Zn fertilization was allocated into straw not into grain. From the perspective of human nutrition, it seems that there is too little scope to enhance Zn concentration in rice by fertilization alone. the major bottleneck to increase Zn concentration in rice grain seems to be internal translocation/retranslocation of Zn from shoot to panicle or from rachis to grain, rather than root uptake of Zn from the soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call