Abstract
Evaluating agricultural ecology can help us to understand regional environmental status and contribute to the sustainable development of agricultural ecosystems. Furthermore, the results of eco-environmental assessment can provide data support for policy-making and agricultural production. The application of multi-source remote-sensing technology has the advantages of being fast, accurate and wide ranging. It can reveal the status of regional ecological environments, and is of great significance to monitoring their quality. In this paper, an agroecological efficiency evaluation model was constructed by combining remote sensing data and ecological index (EI). Multi-source remote-sensing data were used to obtain the evaluation index. Indicators collected from satellites, such as biological richness, vegetation cover, water network density, land stress, and pollution load, were used to quantitatively evaluate the agroecological efficiency of Rangtang County in the Tibetan Plateau. The results showed that the EI of Rangtang County increased from 61.77 to 65.10 during 2000–2020, which means that the eco-environmental quality of this area was good, and it has shown an obviously improving trend over the past 20 years. Rangtang County has converted more than 30 km²of grassland into woodland over the past 20 years. Climate change and human activities have had combined effects on the ecological environment of this area. The change in ecological environment quality is greatly affected by human disturbance. Policymakers should continue setting up nature reserves and should implement the policy of returning farmland to forests. Unreasonable grazing and rational allocation of land resources are still critical points of concern for future ecological environment construction. EI, combined with remote sensing and statistical data, is proven to be able to reasonably represent changes in ecological environment in Rangtang County, thus providing more possibilities for ecological evaluation on the Tibetan Plateau, and even the whole world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.