Abstract

In the present study, we examined the role of agrin in axonal and dendritic elongation in central neurons. Dissociated hippocampal neurons were grown in the presence of either recombinant agrin or antisense oligonucleotides designed to block agrin expression. Our results indicate that agrin differentially regulates axonal and dendritic growth. Recombinant agrin decreased the rate of elongation of main axons but induced the formation of axonal branches. On the other hand, agrin induced both dendritic elongation and dendritic branching. Conversely, cultured hippocampal neurons depleted of agrin extended longer, nonbranched axons and shorter dendrites when compared with controls. These changes in the rates of neurite elongation and branching were paralleled by changes in the composition of the cytoskeleton. In the presence of agrin, there was an upregulation of the expression of microtubule-associated proteins MAP1B, MAP2, and tau. In contrast, a downregulation of the expression of these MAPs was detected in agrin-depleted cells. Taken collectively, these results suggest an important role for agrin as a trigger of the transcription of neuro-specific genes involved in neurite elongation and branching in central neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call