Abstract
A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data, including rainfall patterns and weather-related information (such as pressure, humidity, and temperatures). They have unstructured format for sensory data. The current systems do a poor job of analysing such data since they cannot effectively balance speed and memory usage. An effective categorization model (ECM) on agriculture management system is proposed to address this research difficulty. First, a classification technique called priority-based k-nearest neighbour (KNN) is provided to categorize unstructured multi-dimensional data into a structured form. Additionally, the Hadoop MapReduce (HMR) framework is used to do classification utilizing a parallel approach. Data from real-time IoT sensors used in agriculture is the subject of experiments. The suggested approach significantly outperforms previous approaches that are computing time, memory efficiency, model accuracy, and speedup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Reconfigurable and Embedded Systems (IJRES)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.