Abstract
The current Ukraine War underlines the importance of grain self-sufficiency. After the adoption of the Paris Agreement, two major challenges developing countries are facing in the coming decades are increasing agricultural production to ensure food security and reducing carbon emissions (CE). The key to such an “environment-development dilemma” is to improve agricultural carbon emission efficiency (CEE). Using China as the study site, we systematically analyze the impacts of agricultural management activities on agricultural CEE from 1997 to 2019. Global and local Moran's I index tests provide evidence of a positive spatial dependence of agricultural CEE. Using the LISA cluster map, we observe that high CEE regions tend to be distributed together, dominated by environmental conditions. However, with the promotion of agricultural management activities, such a clustering pattern vanished. Our spatial Durbin model (SDM) estimation results indicate that there are significant nonlinear relationships between agricultural practices and agricultural CEE. While the consumption of fertilizers and pesticides has economies of scale effects, the deployment of agricultural machinery and irrigation have diseconomies of scale effects on local CEE. Based on the SDM results, the direct and indirect effect estimation results suggest that the significant direct and spillover effects of many practices on agricultural CEE have opposite nonlinear shapes, implying a more complicated situation in promoting these activities, as the positive regional effect of an agricultural activity might have a negative impact on adjacent regions. All the results indicate that local policymakers should carefully tailor agricultural development policies based on local environmental conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have