Abstract
We give the first algorithm that (under distributional assumptions) efficiently learns halfspaces in the notoriously difficult agnostic framework of Kearns, Schapire, & Sellie, where a learner is given access to labeled examples drawn from a distribution, without restriction on the labels (e.g. adversarial noise). The algorithm constructs a hypothesis whose error rate on future examples is within an additive /spl epsi/ of the optimal halfspace, in time poly(n) for any constant /spl epsi/ > 0, under the uniform distribution over {-1, 1}/sup n/ or the unit sphere in /spl Ropf//sup n/ , as well as under any log-concave distribution over /spl Ropf/ /sup n/. It also agnostically learns Boolean disjunctions in time 2/sup O~(/spl radic/n)/ with respect to any distribution. The new algorithm, essentially L/sub 1/ polynomial regression, is a noise-tolerant arbitrary distribution generalization of the low degree Fourier algorithm of Linial, Mansour, & Nisan. We also give a new algorithm for PAC learning halfspaces under the uniform distribution on the unit sphere with the current best bounds on tolerable rate of malicious noise.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have