Abstract

Large-size hybrid and pixelized GEM-Micromegas gaseous detectors (40 × 40 cm2 active area) were developed and installed in 2014 and 2015 for the COMPASS2 physics program which started at the same time. That program involved in particular two full years of Drell-Yan studies using a high-intensity pion beam on a thick polarized target. Although the detectors were placed behind a thick absorber, they were exposed to an important flux of low energy neutrons and photons. The detectors were designed to drastically reduce the discharge rate, a major issue for non-resistive Micromegas in high hadron flux, by a factor of more than 100 compared to the former ones. A hybrid solution was chosen where a pre-amplifying GEM foil is placed 2 mm above the micromesh electrode. A pixelized readout was also added in the center of the detector, where the beam is going through, in order to track particles scattered at very low angles. The combination of the hybrid structure and the pixelized central readout allowed the detector to be operated in an environment with particle flux above 10 MHz/cm2 with very good detection efficiencies and spatial resolution. The performance has remained stable since 2015 in terms of gain and resolution, showing the interest of hybrid structures associating a GEM foil to a Micromegas board to protect gaseous detectors against discharges and aging effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.