Abstract

Process together with runtime variations in temperature and voltage, as well as transistor aging, degrade path delay and may eventually induce circuit failure due to timing variations. Therefore, in-field tracking of path delays is essential, and to respond to this need, several delay sensor designs have been proposed in the literature. However, due to the significant overhead of these sensors and the large number of critical paths in today's IC, it is infeasible to monitor the delay of every critical path in silicon. We present an aging- and variationaware representative path selection technique based on machine learning that allows to measure the delay of a small set of paths and infer the delay of a larger pool of paths that are likely to fail due to delay variations. Simulation results for benchmark circuits highlight the accuracy of the proposed approach for predicting critical-path delay based on the selected representative paths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.