Abstract
The objective of this study was two-fold: (1) To evaluate the impact of the physiological aging process on somatosensory, vestibular, and balance functions, and (2) To examine the extent to which age and somatosensory and vestibular functions can predict balance performance. In this cross-sectional study, 141 asymptomatic subjects were assessed for touch pressure thresholds (TPT) with Semmes-Weinstein monofilaments (SWF), vibration thresholds (VT) with a neurothesiometer (NT) and a Rydel-Seiffer tuning fork 128Hz (RSTF). Horizontal vestibulo-ocular reflexes (HVOR gain and asymmetry) were assessed using the video Head Impulse Test (vHIT). A modified version of the Romberg test was used to assess standing balance and the Timed Up and Go test (TUG) and tandem gait (TG) to evaluate dynamic balance. Significant age effects were found for TPT, VT, and balance but not for HVOR gain or asymmetry. Standing balance was explained for 47.2% by age, metatarsal 1 (MT1) (NT), and heel (SWF). The variance in TUG performance was explained for 47.0% by age, metatarsal 5 (MT5) (SWF), and medial malleolus (MM) (NT). Finally, the variance in TG performance was predicted for 43.1% by age, MT1 (NT), HVOR gain, and heel (SWF). Among asymptomatic adult population, both somatosensation and balance performance deteriorate with aging. In contrast, HVOR remains rather constant with age, which is possibly explained by the process of vestibular adaptation. Furthermore, this study provides evidence that the VT, TPT, HVOR gain, and age partly predict balance performance. Still, further research is needed, especially with bigger samples in decades 8 and 9.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have