Abstract

AbstractWe analyzed the thermal crystallization, glass‐transition behavior, and mechanical properties of melt‐extruded poly(trimethylene terephthalate) (PTT) films to investigate their physical aging and annealing effects. The physical aging and annealing of PTT films had an influence on the glass‐transition temperature, recrystallization behavior, and mechanical properties. When samples were aged at an ambient temperature, the crystallization temperature decreased largely within 5 h, the heat of crystallization increased, and the breaking stress and breaking elongation increased. The glass‐transition temperature of annealed samples, which was obtained from differential scanning calorimetry and dynamic mechanical measurements, increased with increasing annealing temperature below 80 °C but decreased above that temperature. In addition, the glass‐transition temperature and modulus of annealed samples were largely affected by the annealing time; in particular, they increased sharply within 1 h on annealing at 50 °C. Consequently, the change in the glass‐transition temperature on annealing was ascribed to the fact that the molecular constraint due to recrystallization and the mobility of rigid amorphous PTT chains competed with each other, being dependent on the annealing temperature. The mechanical properties of aged samples were closely related to their cold‐crystallization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1920–1927, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.