Abstract

This paper presents a method for controlling a swarm of quadrotors to perform agile interleaved maneuvers while holding a fixed relative formation, or transitioning between different formations. The method prevents collisions within the swarm, as well as between the quadrotors and static obstacles in the environment. The method is built upon the existing notion of a virtual structure, which serves as a framework with which to plan and execute complex interleaved trajectories, and also gives a simple, intuitive interface for a single human operator to control an arbitrarily large aerial swarm in real time. The virtual structure concept is integrated with differential flatness-based feedback control to give an end-to-end integrated swarm teleoperation system. Collision avoidance is achieved by using multiple layered potential fields. Our method is demonstrated in hardware experiments with groups of 3–5 quadrotors teleoperated by a single human operator, and simulations of 200 quadrotors teleoperated by a single human operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.