Abstract

In the present work, a novel donor (D)-acceptor (A) fluorophore based on indeno-pyrrole derivative (PYROMe) has been utilized as a dual sensor for volatile acids and aromatic amines, where sensory responses were regulated by the aggregation-induced emission (AIE) property. The twisted structural framework of PYROMe, confirmed by crystal study, avoids closed cofacial encounter upon aggregation and aided with augmented rigidity via different noncovalent interactions that ultimately ensued restricted intramolecular rotation (RIR). Consequently, PYROMe exhibited AIE in THF/H2O mixture along with bright solid-state emission. The accessibility of protonation at carbonyl site and feasible HOMO energy to accept electrons from aromatic amines during photoexcitationenabled PYROMe as a potential dual sensor. A thin film of PYROMe was utilized for the quantitative detection of volatile acids and aromatic amines, and the detection limit (DL) was found to be as low as 0.77 ppm and 6.04 ppb for trifluoroacetic acid (TFA) and aniline vapors, respectively. Beyond the established scopes of substituted indeno-pyrroles, the present study paves the way, for the first time, toward an AIE-driven dual-stimuli response in indeno-pyrrolebased D-A fluorophores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.