Abstract
AbstractDue to the mismatched aggregation behavior and limited compatibility between the donor and acceptor, it is a challenge for the active layer of organic solar cells (OSCs) to spontaneously realize well‐developed morphology in nonhalogenated solvents. In this contribution, an aggregation regulation strategy for acceptors with strong aggregation is developed via thiophene‐substituted alkyl chain engineering to fabricate high‐performance nonhalogenated solvent‐processed OSCs without an additive or post‐treatment. With the replacement of alkyl chains with steric conjugated thiophene‐substituted alkyl chains, the resulting acceptor (namely BTP‐2T, BTP‐T, and BTP‐T‐BO) shows reduced aggregation to match the polymer donor D18‐Cl using toluene as a processing solvent, enabling ordered molecular arrangement and uniform phase separation morphology. Especially, the combined modification of the asymmetric thiophene‐substituted inner chain and branched outer side chains for BTP‐T‐BO enables the formation of a superior nanoscale bi‐continuous interpenetrating network along with ordered and compact molecular packing in the D18‐Cl:BTP‐T‐BO blend. As a result, an excellent PCE of 18.05% is achieved in the D18‐Cl:BTP‐T‐BO‐based device using toluene as the processing solvent without any extra treatment, which is the highest value for nonhalogenated solvent‐processed OSCs without any extra treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.