Abstract

Global cluster geometry optimization has focused so far on clusters of atoms or of compact molecules. We are demonstrating here that present-day techniques also allow to globally optimize clusters of extended, flexible molecules, and that such studies have immediate relevance to experiment. For example, recent experimental findings point to production of larger clusters of an aminoglycoside closely related to Kanamycin A (KA), together with certain preferred physiological cations, by Pseudomonas aeruginosa. The present study provides first theoretical support for KA clustering, with a close examination of the monomer, the bare dimer, and dimers with sodium and potassium cations, employing global cluster structure optimization, in conjunction with force fields, semiempirical methods, DFT and ab-initio approaches. Interestingly, already at this stage the theoretical findings support the experimental observation that sodium cations are preferred over potassium cations in KA clusters, due to fundamentally different cationic embedding. Theoretically predicted NMR and IR spectra for these species indicate that it should be possible to experimentally detect the aggregation state and even the cationic embedding mode in such clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.