Abstract

We present the results of molecular dynamics simulations of net positively charged fullerene nanoparticles in salt-free and salt-added solution. The aggregation of fullerene (C60)-like nanoparticle and counterion are studied in detail as a function of temperatures and a finite salt concentration. Our simulations show that the strong conformation changes as temperature changes. The net positively-charged nanoparticles do not repel each other but are condensed under proper temperatures. If salts are added, the aggregated nanoparticles will be disaggregated due to the Debye screening effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.