Abstract

Electrochemical organic synthesis is typically conducted in organic media. The solvent and related supporting electrolytes negatively affect the greenness of electrosynthesis. In this work, with 100% water used as the solvent, we realize aggregation-driven electrochemical radical cross coupling of unsaturated compounds driven by water tension. A key finding is that aggregation of the substrate at the electrode confined the radical intermediate and prevented side reactions, thus providing a way to regulate radical reactions in addition to their native properties. The reaction provides up to 90% yields with almost quantitative chemoselectivity. The pure water system readily yields the products via cold filtration, and the solvent is recycled repeatedly. In particular, the life span of the radical species generated in the reaction increase significantly because of the confined environment in the aggregation state. The greenness of this protocol is further enhanced with readily separation of product from media using cooling and filtration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.