Abstract

We consider a one-dimensional system of auto-gravitating sticky particles with random initial speeds and describe the process of aggregation in terms of the largest cluster size Ln at any fixed time prior to the critical time. We study the asymptotic behavior of Ln for the warm gas, i.e., for a system of particles with nonzero initial speeds vi(0) = ui, where (ui) is a family of i.i.d. random variables with mean zero, unit variance, and finite pth moment E(|ui|p) < ∞, p ≥ 2, and obtain sharp lower and upper bounds for Ln(t). Bibliography: 17 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.