Abstract
Gingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor β (TGF-β). However, the molecular mechanisms by which microbes induce the activation of TGF-β remain unclear. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) activated TGF-β receptor (TGF-βR)/smad2 signalling to induce epithelial cell apoptosis, even though Aa cannot bind to TGF-βR. Additionally, outer membrane protein 29 kDa (Omp29), a member of the Aa Omps family, can induce actin rearrangements via focal adhesion kinase (FAK) signalling, which also plays a role in the activation of TGF-β by cooperating with integrin. Accordingly, we hypothesized that Omp29-induced actin rearrangements via FAK activity would enhance the activation of TGF-β, leading to gingival epithelial cell apoptosis in vitro. By using human gingival epithelial cell line OBA9, we found that Omp29 activated TGF-βR/smad2 signalling and decreased active TGF-β protein levels in the extracellular matrix (ECM) of cell culture, suggesting the transactivation of TGF-βR. Inhibition of actin rearrangements by cytochalasin D or blebbistatin and knockdown of FAK or integrinβ1 expression by siRNA transfection attenuated TGF-βR/smad2 signalling activity and reduction of TGF-β levels in the ECM caused by Omp29. Furthermore, Omp29 bound to fibronectin (Fn) to induce its aggregation on integrinβ1, which is associated with TGF-β signalling activity. All the chemical inhibitors and siRNAs tested blocked Omp29-induced OBA9 cells apoptosis. These results suggest that Omp29 binds to Fn in order to facilitate Fn/integrinβ1/FAK signalling-dependent TGF-β release from the ECM, thereby inducing gingival epithelial cell apoptosis via TGF-βR/smad2 pathway.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have