Abstract
The wind power generation is highly dependent on current weather conditions. In the course of the energy transition, the generation levels from volatile wind energy are constantly increasing. Accordingly, the prediction of regional wind power generation is a particularly important and challenging task due to the highly distributed installations. This paper presents a study on the role of regional wind power infeed estimation and proposes a multi-aggregated wind power characteristics model based on three scaled Gumbel distribution functions. Multi-levels of wind turbines and their allocation are investigated for the regional aggregated wind power. Relative peak power performance and full load hours are compared for the proposed model and the real measurement obtained from a local distribution system operator. Furthermore, artificial intelligence technologies using neural networks, such as Long Short-Term Memory (LSTM), stacked LSTM and CNN–LSTM, are investigated by using different historical measurement as input data. The results show that the suggested stacked LSTM performs stably and reliably in regional power prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.