Abstract

Effects of a "gemini-type" organic salt 1,2-bis(2-benzylammoniumethoxy) ethane dichloride (BEO) on the aggregation behavior of sodium dodecylsulfate (SDS) have been investigated by turbidity, surface tension, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, (1)H NMR spectroscopy, and differential scanning microcalorimetry. The aggregation behavior of the SDS/BEO mixed aqueous solution shows strong concentration and ratio dependence. For the SDS/BEO solution with a molar ratio of 5:1, large loose irregular aggregates, vesicles, and long thread-like micelles are formed in succession with the increase of the total SDS and BEO concentration. Because BEO has two positive charges, the SDS/BEO solution may consist of the (SDS)(2)-BEO gemini-type complex, the SDS-BEO complex and extra SDS. The aggregation ability and surface activity of the SDS/BEO mixture exhibit the characteristics of gemini-type surfactants. Along with the results of DSC and (1)H NMR, the (SDS)(2)-BEO gemini-type structure is confirmed to exist in the system. This work provides an approach to construct the surfactant systems with the characteristics of gemini surfactants through intermolecular interaction between a two-charged organic salt and oppositely charged single-chain surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call