Abstract
The aggregate stability of 56 salt-affected soil samples from the North-east Plateau, Thailand, was related to soil properties. The soils were Typic Natraqualfs and a Typic Endoaqualf, which are commonly used for paddy rice cultivation. The soil textures are mostly clays and clay loams with clay contents ranging from 313 to 849 g/kg. The dominant mineral in the clay fraction is kaolinite with minor smectite and traces of illite and a little quartz. Aggregate stability of these soils, measured by the wet sieving method, ranges from 3 to91%. Electrical conductivity measured by the saturation extract method ranges from 0.6 to 16.2 dS/m and exchangeable sodium percentage ranges from 5 to 31%, so that the soil samples can be variously classed as saline, sodic, saline–sodic, and normal. The soil property that is most strongly correlated with aggregate stability is pH (r = –0.84) followed by exchangeable potassium (r = +0.75), cation exchange capacity (r = +0.73), clay content (r = +0.72), extractable acidity (r = +0.66), and organic matter (r = +0.66). However contrary to much published literature, no significant relationships exist between aggregate stability and exchangeable sodium percentage, sodium adsorption ratio, or electrical conductivity. Multivariate stepwise regression analyses indicated that aggregate stability of these mostly saline–sodic soils was well predicted by a combination of soil pH and clay content, which is convenient as they are properties determined in routine soil surveys. The presence of small amounts of smectite and illite may have reduced the stability of the dominantly kaolinitic soil aggregates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have