Abstract

Epileptic seizures are well-known neurological complications following stroke, occurring in 3% of patients. However, the intrinsic correlation of seizures with stroke remains largely unknown. Hydrogen sulfide (H2 S) is a gas transmitter that may mediate cerebral ischemic injury. But the role of H2 S in seizures has not been understood yet. We examined the effect of H2 S on seizure-like events (SLEs) and underlying mechanisms. Pentylenetetrazole (PTZ)- and pilocarpine-induced rat epileptic seizure models were tested. Low-Mg(2+) /high-K(+) - and 4-aminopyridine (4-AP)-induced epileptic seizure models were examined using patch-clamp recordings in brain slices. It was found that NaHS aggravated both PTZ- and pilocarpine-induced SLEs in rats, while both low-Mg(2+) /high-K(+) - and 4-AP-induced SLEs were also exacerbated by NaHS in brain slices, which may be due to its regulation on the voltage-gated sodium channel, N-methyl-D-aspartic acid receptor (NMDAR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function. Furthermore, these effects were reversed by blocking voltage-gated sodium channel, NMDAR, and AMPAR. These results suggest a pathological role of increased H2 S level in SLEs in vivo and in vitro. Enzymes that control H2 S biosynthesis could be interesting targets for antiepileptic strategies in poststroke epilepsy treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.