Abstract

BackgroundFunctional mitral regurgitation (FMR) is one of the most common heart valve diseases in diabetes and may increase left ventricular (LV) preload and aggravate myocardial stiffness. This study aimed to investigate the aggravation of FMR on the deterioration of LV strain in type 2 diabetes mellitus (T2DM) patients and explore the independent indicators of LV peak strain (PS).Materials and methodsIn total, 157 T2DM patients (59 patients with and 98 without FMR) and 52 age- and sex-matched healthy control volunteers were included and underwent cardiac magnetic resonance examination. T2DM with FMR patients were divided into T2DM patients with mild (n = 21), moderate (n = 19) and severe (n = 19) regurgitation. LV function and global strain parameters were compared among groups. Multivariate analysis was used to identify the independent indicators of LV PS.ResultsThe T2DM with FMR had lower LV strain parameters in radial, circumferential and longitudinal direction than both the normal and the T2DM without FMR (all P < 0.05). The mild had mainly decreased peak diastolic strain rate (PDSR) compared to the normal. The moderate had decreased peak systolic strain rate (PSSR) compared to the normal and PDSR compared to the mild and the normal. The severe FMR group had decreased PDSR and PSSR compared to the mild and the normal (all P < 0.05). Multiple linear regression showed that the regurgitation degree was independent associated with radial (β = − 0.272), circumferential (β = − 0.412) and longitudinal (β = − 0.347) PS; the months with diabetes was independently associated with radial (β = − 0.299) and longitudinal (β = − 0.347) PS in T2DM with FMR.ConclusionFMR may aggravate the deterioration of LV stiffness in T2DM patients, resulting in decline of LV strain and function. The regurgitation degree and months with diabetes were independently correlated with LV global PS in T2DM with FMR.

Highlights

  • Functional mitral regurgitation (FMR) is one of the most common heart valve diseases in diabetes and may increase left ventricular (LV) preload and aggravate myocardial stiffness

  • FMR may aggravate the deterioration of LV stiffness in type 2 diabetes mellitus (T2DM) patients, resulting in decline of LV strain and function

  • The LV global peak strain (PS), peak systolic strain rate (PSSR), and peak diastolic strain rate (PDSR) in three directions were all significantly decreased in T2DM patients with FMR compared to both normal controls and T2DM without FMR (Table 2)

Read more

Summary

Introduction

Functional mitral regurgitation (FMR) is one of the most common heart valve diseases in diabetes and may increase left ventricular (LV) preload and aggravate myocardial stiffness. This study aimed to investigate the aggravation of FMR on the deterioration of LV strain in type 2 diabetes mellitus (T2DM) patients and explore the inde‐ pendent indicators of LV peak strain (PS). Functional mitral regurgitation (FMR) is the most common heart valve disease in diabetes and may increase the mortality of this population. A Verona diabetes study has shown that ~ 32% of type 2 diabetes mellitus (T2DM) patients have FMR. T2DM combined with FMR may increase left ventricle (LV) preload and force the ventricle to work under higher pressure, which may aggravate LV myocardial stiffness. It is of great significance to investigate the cardiac dysfunction in T2DM patients with FMR before the occurrence of adverse events to reduce cardiovascular risk and improve outcomes

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.