Abstract

Vascular dysfunction is a common finding in type 2 diabetes, although the response to urotensin II (UII), a potent vasoconstrictor peptide, remains unclear. We investigated whether a UII-induced contraction was increased in the aortas from type 2 diabetic Goto-Kakizaki (GK) rats at the chronic stage. At 36 or 37 weeks of age (older group), a UII-induced contraction was seen in GK rats and was reduced by a Rho kinase inhibitor or urotensin receptor (UT) antagonist, whereas UII failed to induce a contraction in aortas from age-matched Wistar rats. In UII-stimulated aortas, the expression of Rho kinases, Rho A, and phosphorylated myosin phosphatase target subunit 1 did not change between the two groups; however, phosphorylation of extracellular-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK) was greater in GK than in Wistar rats. Compared to intact aortas, UII-induced contractions were slightly, but not significantly, increased by endothelial denudation of the aortas of Wistar rats at 24 weeks of age. At 6 weeks of age (young group), the UII-induced contractions were seen in GK and Wistar groups. The total expression and the membrane-to-cytosol ratio of the UT protein slightly decreased in Wistar aortas with aging but not in GK aortas. These results demonstrate that the UII-induced contraction gradually decreased with aging in Wistar rats and was preserved in type 2 diabetes. Although alterations of UII-induced contractions during aging and type 2 diabetes may be associated with kinase activities (MAPKs or Rho kinase) or receptor profiles, further investigations are necessary to clarify the mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.