Abstract
BackgroundTraditional epidemiological models tend to oversimplify the transmission dynamics of Mycobacterium tuberculosis (M.tb) to replicate observed tuberculosis (TB) epidemic patterns. This has led to growing interest in advanced methodologies like agent-based modelling (ABM), which can more accurately represent the complex heterogeneity of TB transmission.ObjectivesTo better understand the use of agent-based models (ABMs) in this context, we conducted a systematic review with two main objectives: (1) to examine how ABMs have been employed to model the intricate heterogeneity of M.tb transmission, and (2) to identify the challenges and opportunities associated with implementing ABMs for M.tb.Search methodsWe conducted a systematic search following PRISMA guidelines across four databases (MEDLINE, EMBASE, Global Health, and Scopus), limiting our review to peer-reviewed articles published in English up to December 2022. Data were extracted by two investigators using a standardized extraction tool. Prospero registration: CRD42022380580.Selection criteriaOur review included peer-reviewed articles in English that implement agent-based, individual-based, or microsimulation models of M.tb transmission. Models focusing solely on in-vitro or within-host dynamics were excluded. Data extraction targeted the methodological, epidemiological, and computational characteristics of ABMs used for TB transmission. A risk of bias assessment was not conducted as the review synthesized modelling studies without pooling epidemiological data.ResultsOur search initially identified 5,077 studies, from which we ultimately included 26 in our final review after exclusions. These studies varied in population settings, time horizons, and model complexity. While many incorporated population heterogeneity and household structures, some lacked essential features like spatial structures or economic evaluations. Only eight studies provided publicly accessible code, highlighting the need for improved transparency.Authors’ conclusionsABMs are a versatile approach for representing complex disease dynamics, particularly in cases like TB, where they address heterogeneous mixing and household transmission often overlooked by traditional models. However, their advanced capabilities come with challenges, including those arising from their stochastic nature, such as parameter tuning and high computational expense. To improve transparency and reproducibility, open-source code sharing, and standardised reporting are recommended to enhance ABM reliability in studying epidemiologically complex diseases like TB.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have