Abstract

The ability to tolerate environmental change may decline as fishes age. We tested the hypothesis that ageing influences the scope for phenotypic flexibility in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between two vastly different environments, water and land. We found that older fish (4-6years old) exhibited marked signs of ageing; older fish were reproductively senescent, had reduced fin regenerative capacity and body condition, and exhibited atrophy of both oxidative and glycolytic muscle fibers relative to younger adult fish (1-2years old). However, age did not affect routine O2 consumption. We then acclimated adult fish (1-6years) to water (control) or air for 10days to assess the scope for phenotypic flexibility in response to terrestrial exposure. In support of our hypothesis, we found that older air-acclimated fish had a diminished scope for gill remodeling relative to younger fish. We also found that older fish exhibited poorer terrestrial locomotor performance relative to younger adult fish, particularly when acclimated to air. Our results indicate that ageing diminishes skeletal muscle integrity and locomotor performance of amphibious fishes, and may, therefore, impair terrestrial foraging ability, predator avoidance, or dispersal across the terrestrial environment. Remarkably, older fish voluntarily left water to a similar degree as younger fish despite the age-related deterioration of traits important for terrestrial life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call