Abstract
The climate changed from warm-dry to warm-wet during the 1960s in northwest China. However, the effects of climate change on the response of radial growth from different age-class trees have been unclear. We assessed the age-effect radial growth responses in three age-classes (ml-old: ≥200 years, ml-middle: 100–200 years and ml-young: <100 years) of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) in the eastern Tianshan Mountains. The primary conclusions were as follows: the developed chronologies of the three age-class trees contained significant climate information and exhibited high similarity as shown by calculating the statistical parameter characteristics and Gleichlaufigkeit index. The three age-class trees were consistent for annual variation trends of radial growth under climate change, showing similar fluctuations, tree-ring width chronology trends, time trends of cumulative radial growth, and basal area increment. In addition, the old and middle trees were found to be more sensitive to climate variability by analyzing Pearson correlations between radial growth from three age-class trees and climate factors. As a result, the drought caused by reduced total precipitation and higher mean temperature was a limiting factor of tree radial growth, and the trees with ages of up to 100 years were more suitable for studies on the growth-climate relationships. Thus, the studies on age-effect radial growth responses of Schrenk spruce can help not only in understanding the adaptive strategies of different-age trees to climate change, but also provide an accurate basis for climate reconstruction.
Highlights
Tree growth is an irreversible process, and the size and growth rates of trees are affected by external environmental factors, such as climate condition, altitude, location slope, slope direction, and historical interference mechanisms
Our studies focused on accurately assessing the stability of the radial growth-climate relationships, understanding the physiological and ecological characteristics of trees under climate change and choosing the appropriate age-class trees to carry out dendroclimatology research in arid and semi-arid areas
Was higher than ml-middle (0.110) and ml-old (0.132), suggesting that the radial growth of Schrenk spruce was affected by tree growth in the previous year, and the “lag effect” of climate had more profound effects on the young trees
Summary
Tree growth is an irreversible process, and the size and growth rates of trees are affected by external environmental factors, such as climate condition, altitude, location slope, slope direction, and historical interference mechanisms. Through the informed choice of sample trees, available settings and a thorough dendroclimatology research process, the effects of noise, such as forest disturbance and competition, on tree growth trends can usually be avoided. The climatic signals of tree-ring chronologies could be maximally retained, and the age-related growth trends could be extracted by the appropriately detrended methods. Tree age could interfere with the expression of environmental signals related to radial growth, and the age effect is not completely eliminated from the chronologies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.