Abstract
Tree growth is largely driven by climate conditions in arid and alpine areas. A strong change in climate from warm-dry to warm-wet has already been observed in northwest China. However, little is known about the impacts of regional climate variability on the radial growth of trees along elevations of the eastern Tianshan Mountains. Consequently, we developed three tree-ring width chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) ranging in elevation from 2159 to 2552m above sea level (a.s.l.), which play an important role in the forestry ecosystem, agriculture, and local economy of Central Asia. In our study, the correlation analyses of growth-drought using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales demonstrated that drought in growing season was the main factor limiting tree growth, regardless of elevation. The relationships between radial growth of Schrenk spruce and main climate factors were relatively stable by moving correlation function, and the trend of STD chronologies and basal area increment (BAI) also showed a synchronous decline across the three elevations in recent decades. And meanwhile, slight differences in responses to climate change in radial growth along elevations were examined. The drought stress increased as elevations decreased. Radial growth at the higher elevation depended on moisture availability due to high temperature, as indicated by the significant negative correlation with mean temperature in the late growing season of the previous year (August-September, p<0.001). However, radial growth at the lower elevation were restricted by drought stress due to less precipitation and higher temperatures, as demonstrated by the significant negative correlation with mean temperature but positive with total precipitation in the early growing season of the current year (April-May, p<0.05). In addition, the decline of radial growth (BAI) at the higher elevation (3.710cm2yr−1/decade, p<0.001) was faster than that of the middle elevation (2.344cm2yr−1/decade, p<0.001) and the lower elevation (3.005cm2yr−1/decade, p<0.001) since 2000, indicating that the trees at higher elevation of a relatively humid environment were more susceptible to the effects of climate change due to their poor adaptability to water deficit. Therefore, the forest ecosystems would be suppressed as a result of increasing drought stress in the future, especially in the high-elevation forests of arid and semi-arid areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.