Abstract
AbstractForests have been recognized to sequester a substantial amount of carbon (C) from the atmosphere. However, considerable uncertainty remains regarding the magnitude and time course of the C sink. Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties in prediction of forest C sink potential. In this study, we developed a stepwise data assimilation approach to combine a process‐based Terrestrial ECOsystem Regional model, observations from multiple sources, and stochastic sampling to inversely estimate carbon cycle parameters including carbon sink at different forest ages for evergreen needle‐leaved forests in China. The new approach is effective to estimate age‐dependent parameter of maximal light‐use efficiency (R2 = 0.99) and, accordingly, can quantify a relationship between forest age and the vegetation and soil C sinks. The estimated ecosystem C sink increases rapidly with age, peaks at 0.451 kg C m−2 yr−1 at age 22 years (ranging from 0.421 to 0.465 kg C m−2 yr−1), and gradually decreases thereafter. The dynamic patterns of C sinks in vegetation and soil are significantly different. C sink in vegetation first increases rapidly with age and then decreases. C sink in soil, however, increases continuously with age; it acts as a C source when the age is less than 20 years, after which it acts as a sink. For the evergreen needle‐leaved forest, the highest C sink efficiency (i.e., C sink per unit net primary productivity) is approximately 60%, with age between 11 and 43 years. Overall, the inverse estimation of carbon cycle parameters can make reasonable estimates of age‐dependent C sequestration in forests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.