Abstract
One of the important areas of research in neuroscience is to investigate how brain activity changes during aging. In this research, we employ complexity techniques to analyze how brain activity changes based on the age of subjects during sleep. For this purpose, we analyze the Electroencephalogram (EEG) signals of 22 subjects induced by sleep medication using fractal theory and sample entropy. The analysis showed that the fractal dimension and sample entropy of EEG signals decrease due to aging. Therefore, we concluded that aging causes lower complexity in EEG signals during sleep. The employed method of analysis could be applied to analyze the effect of aging on the variations of the activity of other organs (e.g. heart, muscle) during aging by studying their related physiological signals (e.g. ECG, EMG).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.