Abstract

1. Two-pore domain K⁺ (K(2P) ) channel expression influences brain development. The K(2P) channels, including two-pore domain acid-sensitive K⁺ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K(2P) channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons. 2. Expression of TASK channels (TASK-1, TASK-2 and TASK-3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch-clamp technique. 3. In adult (P120) rat DRG, expression of TASK-2 mRNA and protein was downregulated, whereas TASK-3 mRNA and protein expression was upregulated. There were no consistent changes in TASK-1 mRNA and protein expression. Single-channel recordings showed very low TASK-2- and TASK-3-like channel expression in P1-P2 DRG neurons (∼10% in TASK-2 and ∼3% in TASK-3). In P120 DRG, there was a reduction in the detection of TASK-2-like channels, whereas the detection of TASK-3-like channels increased. 4. These results show that TASK-2 and TASK-3 mRNA and protein expression undergoes age-related changes in DRG neurons, indicating that TASK-2 and TASK-3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.