Abstract

Caveolin-1, an integral protein of caveolae, is associated with multiple cardiovascular signalling pathways. Caveolin-1 knockout (KO) mice have a reduced lifespan. As changes in artery structure and function are associated with ageing we have investigated the role of caveolin-1 ablation on age-related changes of small artery contractility and passive mechanical properties. Mesenteric small arteries isolated from 3 and 12-month wild-type (WT) and caveolin-1 KO mice were mounted on a pressure myograph and changes in passive and functional arterial properties were continuously monitored. In WT mice ageing was associated with a reduction in arterial contractility to noradrenaline which was reversed by inhibition of nitric oxide synthase with L-NNA. Similarly, in 3-month-old mice, caveolin-1 KO reduced contractility to noradrenaline by an L-NNA-sensitive mechanism. However, ageing in caveolin-1 KO mice was not associated with any further change in contractility. In WT mice ageing was associated with an increased passive arterial diameter and cross-sectional area (CSA), consistent with outward remodelling of the arterial wall, and a reduced arterial distensibility. Caveolin-1 ablation at 3 months of age resulted in similar changes in passive arterial properties to those observed with ageing in WT animals. However, ageing in caveolin-1 KO mice resulted in a reduced arterial CSA indicating different effects on passive structural characteristics from that observed in WT mice. Thus, caveolin-1 mice show abnormalities of small mesenteric artery function and passive mechanical characteristics indicative of premature vascular ageing. Moreover, caveolin-1 ablation modulates the age-related changes usually observed in mesenteric arteries of WT mice.

Highlights

  • Cardiovascular diseases are responsible for considerable mortality and morbidity in the developed world and ageing is a clear risk factor for the development of such disorders [1]

  • The assignment of individual genotype based upon the above PCR expression profiles was confirmed in a subset of tissues wherein mice assigned by genotyping as caveolin-1 KO had, as anticipated, a complete absence of caveolin-1 protein in contrast to WT animals (Fig. 1C)

  • Whilst electron micrographs of arteries from WT arteries confirmed the presence of caveolae, there was no evidence of caveolae in arteries from caveolin-1 KO mice (Figs 2 and 3)

Read more

Summary

Introduction

Cardiovascular diseases are responsible for considerable mortality and morbidity in the developed world and ageing is a clear risk factor for the development of such disorders [1]. Caveolin-1 has been long known to be a protein integral to caveolae formation and caveolin-1 knockout mice (caveolin-1 KO) lack identifiable caveolae in the vasculature [12, 14, 15]. These mice are viable and fertile they exhibit reductions in lifespan which suggests a role for caveolin-1 and/or caveolae in the ageing doi:10.1111/j.1582-4934.2011.01457.x

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.