Abstract

Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM.

Highlights

  • There is a working memory (WM) decline as we age

  • All participants, none of whom were taking psychotropic medication, were instructed to abstain from consuming alcohol and caffeine the day before the experimental session. All volunteers gave their informed consent to participating in the study, and the study protocol was approved by the ethical Committee at the University of Santiago de Compostela (USC)

  • Electrical Brain Activity For P1 and N1 amplitude and latency, the ANOVAs did not reveal any significant effect of Age Group, Memory Load, or of their interaction

Read more

Summary

Introduction

There is a working memory (WM) decline as we age (for review, see Park et al, 2002; Glisky, 2007; Fabiani, 2012). This capacity has been defined as the ability to hold in mind and/or manipulate for brief periods of time small amounts of information that are no longer available in our environment (Baddeley and Hitch, 1974; Baddeley, 2012). Working memory decline due to normal aging processes is indicated by lower accuracy rates and longer reaction times (RTs) in performance of experimental tasks (Baltes et al, 1999; Park et al, 2002). It has been suggested that it may be caused by a general slowing of processing speed in old adults (Salthouse, 1996; Rousselet et al, 2009), and/or by deficits in frontal lobe function, which, in turn, give rise to alterations in executive control (Hasher and Zacks, 1988; West, 1996; Paxton et al, 2008; Kalkstein et al, 2011)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call